EQUATIONS IN MOTION

Average speed $v=\frac{d}{t}$	$\mathrm{d}=$ distance, $\mathrm{t}=$ time
Average velocity $\bar{v}=\frac{\Delta x}{\Delta t}$	$\Delta \mathrm{x}=$ displacement, $\Delta \mathrm{t}=$ elapsed time
Average acceleration $\bar{a}=\frac{\Delta v}{\Delta t}$	$\Delta \mathrm{v}=$ change in velocity, $\Delta \mathrm{t}=$ elapsed time
Linear motion kinematics 1-D (constant acceleration a) $\begin{aligned} & v=v_{0}+a t \\ & x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\ & v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\ & v=\sqrt{2 g h}(\text { Free fall from 0velocity }) \end{aligned}$	To apply in two dimensions, the easiest way is to choose an $x-y$ coordinate system so that the direction of the acceleration is entirely along either the x or the y direction. This greatly simplifies things as the acceleration in the other coordinate direction will have a component of 0 and the motion in that other direction will have constant velocity. The components of motion in the x and y directions are analyzed separately.
Vector components $\begin{array}{lr} v_{x}=v \cos \theta, & v=\sqrt{v_{x}^{2}+v_{y}^{2}} \\ v_{y}=v \sin \theta, & \tan \theta=\frac{v_{y}}{v_{x}} \end{array}$	For a vector of magnitude v making an angle θ with the x-axis
Centripetal acceleration $a_{R}=\frac{v^{2}}{R}$	Centripetal acceleration a_{R} is toward the center of the circle of radius r for an object traveling with constant speed v

FORCES AND TORQUE

Newton's first law of motion (Equilibrium) $\sum \vec{F}=0$	At equilibrium, every body continues in its state of rest or of uniform speed as long as no net force and no net torque act on it.		
$\tau_{\text {clockwise }}=\tau_{\text {counterclockwise }}$		\quad	The acceleration a of an object is directly
:---			
Newton's second law of			
motion (Dynamics)			
$F=m a$	\quad	proportional to the net force acting on it and is	
:---			
inversely proportional to its mass. The direction			
of the acceleration is in the direction of the net			
force action the object.	\(\left	\begin{array}{l}Whenever one object exerts a force on a 	

second object, the second exerts an equal and

opposite force on the first.\end{array}\right|\)| Opposes any impending relative motion |
| :--- |
| between two surfaces, where the magnitude |
| can assume any value up to a maximum of $\mu_{s} F_{N}$ |
| where μ_{s} is the coefficient of static friction and |
| F_{N} is the magnitude of the normal force. |

$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$	$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Inclined Planes $F_{\text {incline }}=m g \sin \theta$ $F_{\text {normal }}=m g \cos \theta$	θ is the angle between the inclined plane and the horizontal surface
Hooke's Law $F=-k \Delta x$	The further a spring is stretched, the more force it pulls back with.
Torque $\tau=F l$	Torque, which can be roughly thought of as a twisting force, is proportional to the force applied and the lever arm length.

WORK AND ENERGY

Work done by a constant force $W=F d \cos \theta$	Work W done by a constant force of magnitude F on an object as it is displaced by a distance d. The angle between the directions of F and d is θ. Work is positive if the object is displaced in the direction of the force and negative if it is displaced against the force. The work is zero if the displacement is perpendicular to the direction of the force.
Kinetic energy $K=\frac{1}{2} m v^{2}$	Kinetic energy K for a mass m traveling at a speed v.
$\begin{aligned} & \text { Gravitational potential } \\ & \text { energy } \\ & U=m g h \text { (local) } \\ & U=-\frac{G M m}{r} \text { (general) } \end{aligned}$	Potential energy U is the energy that an object of mass m has by virtue of its position relative to the surface of the earth. That position is measured by the height h of the object relative to an arbitrary zero level.
Conservative forces - Gravitational force - Elastic spring force - Electric force Non-conservative forces - Frictional forces - Air resistance - Tension - Normal force - Propulsion of a motor	A force is conservative if either: - The work done by the force on an object moving from one point to another depends only on the initial and final positions and is independent of the particular path taken. - The net work done by the force on an object moving around any closed path is zero
Conservation of Mechanical Energy (Only holds true if non-conservative forces are ignored) $\begin{aligned} & E_{2}=E_{1} \\ & K_{2}+U_{2}=K_{1}+U_{1} \end{aligned}$	The total mechanical energy of a system, remains constant as the object moves, provided that the net work done by external non-conservative forces (such as friction and air resistance) is zero.
Work-energy Theorem $W_{n c}=\Delta K+\Delta U+\Delta E_{i}$	The work due to non-conservative forces $W_{n c}$ is equal to the change in kinetic energy ΔK plus the change in gravitational potential energy ΔU plus any changes in internal energy due to friction.
Rest Mass Energy $E=m c^{2}$	The energy inherent to a particle by nature of it having a mass.

Need help for exams?
 L check out our classroom prep sessions - customized to your exact course - at WWW,prep101.com

Power	
$P=\frac{W}{t}=F v$	Power P is defined as the rate at which work is done. It can also be expressed in terms of the force F being applied to the object traveling at a speed v. It is more correct to express this version of the relationship as $P=F v \cos \theta$
where θ is the angle between F and v.	

MOMENTUM

Linear momentum:
$p=m v$
$\vec{p}=m \vec{V}$
Principle of conservation of linear momentum:
$\vec{P}_{2}=\vec{P}_{1}$
Impulse-momentum theorem:
$\Delta p=F \cdot t$
$\vec{p}_{2}-\vec{p}_{1}=\overline{\vec{F}}_{n e t} \Delta t$

Elastic collisions:

- Bodies do not stick together
- Kinetic energy is conserved
- Momentum is conserved
Inelastic collisions:
- Bodies stick together if completely inelastic
- Kinetic energy is not
conserved
- Momentum is conserved
Center of Mass (CM or CofM)
$x_{c m}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{M_{\text {total }}}$
For two bodies:
$x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$

FLUIDS AND SOLIDS

Density $\rho=\frac{m}{V}$
Pressure $P=\frac{F}{A}$ (general definition) Hydrostatic pressure at a fixed depth

Density of a liquid at rest. Density can also be measured relative to water, which is termed specific gravity. A specific gravity > 1 means the liquid is more dense than water, A specific gravity <1 means the liquid is less dense than water The hydrostatic pressure on a fluid volume is dependent on its depth, and is equal in all directions.

$P=\rho g y$	
Buoyant Force $F_{\text {buoyant }}=\rho V g$	The buoyant force on an object in fluid is upward and equal to the weight of the fluid that the object displaces.
Continuity Equation $Q=A v$	The volume flow rate of a fluid is proportional to the cross-sectional area of the pipe and the velocity of the fluid. $\mathrm{Q}_{\text {in }}$ must be equal to $\mathrm{Q}_{\text {out }}$.
Bernoulli's Equation $p+\rho g y+\frac{1}{2} \rho v^{2}=\text { consta }$	One way to remember the Bernoulli equation is to think of it as an energy conservation equation. The three terms roughly correspond to pressure energy, potential energy, and kinetic energy, respectively.
Elastic modulus of a solid $\text { Modulus }=\frac{\text { Stress }}{\text { Strain }}$	A high modulus material is hard and rigid. Examples are metal and ceramic. A low modulus material is elastic, like rubber.

WAVES AND PERIODIC MOTION

Wave Velocity $v=f \lambda$	The velocity of a wave is the product of its frequency and wavelength.
Wave Period $T=\frac{1}{f}$	
Sound decibels $\beta=10 \log \frac{I}{I_{o}}$	A difference of 10 in decibels corresponds to sound intensity levels that differ by a factor of 10. For example, 90 dB is 10 times as loud as 80 dB .
Standing Waves Both ends fixed or free $L=\frac{n \lambda_{n}}{2}(n=1,2,3, \ldots)$ One end fixed one end free $L=\frac{n \lambda_{n}}{4}(n=1,3,5, \ldots)$	When a standing wave is formed on a piece of string, the string length is some fractional multiple of the standing wave wavelength. Depending on how the string is fixed, each end can be a node or an anti-node.
Beat frequency $f_{\text {beat }}=\left\|f_{1}-f_{2}\right\|$	When two waves of constant amplitude but different frequencies interfere with each other, the resulting wave's amplitude is confined to an envelope with some periodicity. The frequency of the envelope is the beat frequency and can be heard as distinct beats because of the amplitude variation with time.
Doppler effect $\frac{\Delta f}{f_{s}}=\frac{v}{c} \quad \frac{\Delta \lambda}{\lambda_{s}}=\frac{v}{c}$	The apparent frequency of the source is increased as the source approaches the observer, and is decreased as the sources leaves the observer.

ELECTROSTATICS AND MAGNETISM

Bolztmann's constant k and has a value of: $k=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m} / \mathrm{C}^{2}$

Coulomb's law (electric force)
$F=k \frac{Q_{1} Q_{2}}{r^{2}}$

The magnitude of the force F between two charges $\left(Q_{1}\right.$ and $\left.Q_{2}\right)$ in terms of the distance r between the two charges. The direction of the force is directed along the line between the two forces. This force is repulsive if the two charges

	if the one charge is positive and the other negative.
Electric field due to a point charge q at a distance r $E=k \frac{Q}{r^{2}}$	E is a vector and points away from a positive charge and toward a negative charge.
Electric potential energy $U=k \frac{Q_{1} Q_{2}}{r}$	The potential energy stored between the interaction between two point charges.
Electric potential $V=k \frac{Q}{r}$	The electric potential V due to a point charge q at a distance r away from the charge.
In constant electric fields $\begin{array}{ll} \vec{F}=q \vec{E} & U=q E d \\ V=E d & U=V q \end{array}$	Note that the force F is in the same direction as the electric field E if the charge q is positive and in the opposite direction if the charge is negative. The energy gained by some charge in a field is simply force times the distance traveled. Potential is the energy per unit charge.
Force on a charge moving in a magnetic field $\begin{aligned} & \vec{F}=q \vec{v} \times \vec{B} \\ & F=q v B \sin \theta \end{aligned}$	A charge q moving in a magnetic field with a velocity \vec{V} experiences a force \vec{F}. The magnitude of this force can also be expressed in terms of the angle θ between \vec{V} and \vec{B}.

ELECTRONIC CIRCUITS	
Ohm's law $V=I R$	The potential difference V across a device is given by its resistance R and the current I that flows through it
Resistance of a wire $R=\rho \frac{L}{A}$	The resistance R of a length L of wire with a cross-sectional area A and resistivity ρ. Resistivity has units $\Omega \cdot m$.
Electric power $P=I V=I^{2} R=\frac{V^{2}}{R}$	With help from Ohm's law, electric power P can be calculated using any combination of two of the following quantities: resistance R, voltage V or current I
RMS voltage and current (AC circuits) $\begin{aligned} & V_{r m s}=V_{0} / \sqrt{2} \\ & I_{r m s}=I_{0} / \sqrt{2} \end{aligned}$	The root-mean-square values can be calculated from the peak values (V_{0} and I_{0}) and are used to calculate the average power \bar{P} in AC circuits: $\bar{P}=I_{r m s}^{2} R=\frac{V_{r m s}^{2}}{R}$
Resistances in series $R_{e q}=R_{1}+R_{2}$	For more than two resistances in series: $R_{e q}=R_{1}+R_{2}+R_{3}+R_{4}+\ldots$
Resistances in parallel $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	For more than two resistances in parallel: $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\ldots$
Capacitance $C=\frac{Q}{V}$	A higher capacitance capacitor can store more charge at the same voltage.

Capacitors in series $\boldsymbol{C}_{\boldsymbol{s}}$ and parallel $\boldsymbol{C}_{\boldsymbol{P}}$ $\frac{1}{C_{S}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$	For more than two capacitors:
$C_{P}=C_{1}+C_{2}$	$\frac{1}{C_{S}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}+\ldots$
Electric energy stored by a capacitor	$C_{P}=C_{1}+C_{2}+C_{3}+C_{4}+\ldots$
$U_{E}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}$	Amount of electric energy stored in a capacitor is given in terms of the capacitance C and the potential difference between the conductors V.

LIGHT AND GEOMETRICAL OPTICS

Snell's law $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	The angle of incidence θ_{1} is with respect to the perpendicular of the surface between the two media (with indices of refraction n_{1} and n_{2}). The angle of refraction θ_{2} is also with respect to the perpendicular.
Total internal reflection $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$	The critical angle θ_{c} is the angle of incidence beyond which total internal reflection occurs. The index of refraction for the medium in which the incident ray is traveling is n_{1}
Energy of one photon $E=h f$	The energy of light is dependent on its frequency. H is the planck constant $6.626068 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$
Index of refraction $n=\frac{c}{v}$	The higher the index of refraction is for a medium, the slower is the speed of light in that medium.
The lens equation $\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$	The focal length of the lens f is: - Positive for a converging lens - Negative for a diverging lens The object distance d_{o} is: - Positive if it is on the side of the lens from which the light is coming - Negative if on the opposite side The image distance d_{i} is: - Positive if it is on the opposite side of the lens from which the light is coming - \quad Negative if on the same side
Lateral magnification $m=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$	For an upright image, the magnification m is positive and for an inverted image m is negative.
Power of a lens $P=\frac{1}{f}$	
Focal length of a spherical mirror $f=\frac{1}{2} r$	For a spherical mirror, the focal length is half of the radius of curvature.

