

MCAT Physics Equation Sheet

EOU	ATIO	NS IN	MO	FION
- ~				

Average speed $v = \frac{d}{t}$	d = distance, t = time
Average velocity $\overline{v} = \frac{\Delta x}{\Delta t}$	Δx = displacement, Δt = elapsed time
Average acceleration $\overline{a} = \frac{\Delta v}{\Delta t}$	Δv = change in velocity, Δt = elapsed time
Linear motion kinematics 1-D (constant acceleration a) $v = v_0 + at$ $x = x_0 + v_0 t + \frac{1}{2}at^2$ $v^2 = v_0^2 + 2a(x - x_0)$ $v = \sqrt{2gh} (Free fall from 0 velocity)$	To apply in two dimensions, the easiest way is to choose an x-y coordinate system so that the direction of the acceleration is entirely along either the x or the y direction. This greatly simplifies things as the acceleration in the other coordinate direction will have a component of 0 and the motion in that other direction will have constant velocity. The components of motion in the x and y directions are analyzed separately.
Vector components $v_x = v \cos \theta$, $v = \sqrt{v_x^2 + v_y^2}$ $v_y = v \sin \theta$, $\tan \theta = \frac{v_y}{v_x}$	For a vector of magnitude v making an angle θ with the x-axis
Centripetal acceleration $a_{R} = \frac{v^{2}}{R}$	Centripetal acceleration a_R is toward the center of the circle of radius r for an object traveling with constant speed v

FORCES AND TORQUE

Newton's first law of motion (Equilibrium) $\sum \vec{F} = 0$ $\tau_{clockwise} = \tau_{counterclockwise}$	At equilibrium, every body continues in its state of rest or of uniform speed as long as no net force and no net torque act on it.
Newton's second law of	The acceleration a of an object is directly
motion (Dynamics)	proportional to the net force acting on it and is
F = ma	inversely proportional to its mass. The direction
1 1100	of the acceleration is in the direction of the net
	force action the object.
Newton's third law of	Whenever one object exerts a force on a
motion	second object, the second exerts an equal and
	opposite force on the first.
Force of static friction	Opposes any impending relative motion
F <ue< th=""><th>between two surfaces, where the magnitude</th></ue<>	between two surfaces, where the magnitude
$\Gamma_{fr} \geq \mu_s \Gamma_N$	can assume any value up to a maximum of $\mu_{s}F_{N}$
	where μ_s is the coefficient of static friction and
	F_N is the magnitude of the normal force.
Force of kinetic friction	Force between two surfaces sliding against one
$E = \mu E$	another that opposes the relative motion of the
$\Gamma_{fr} - \mu_k \Gamma_N$	two surfaces, where μ_k is the coefficient of
	kinetic friction.
Force of gravity between	The force F_G between two objects of masses m_1
any two objects	and m_2 and separated by a distance r. The
	value of the universal gravitation constant is:

$F_G = G \frac{m_1 m_2}{r^2}$	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Inclined Planes	
$F_{incline} = mg\sin\theta$	$\boldsymbol{\theta}$ is the angle between the inclined plane and the horizontal surface
$F_{normal} = mg\cos\theta$	
Hooke's Law	The further a spring is stretched, the more force
$F = -k\Delta x$	it pulls back with.
Torque	Torque, which can be roughly thought of as a
au = Fl	twisting force, is proportional to the force applied and the lever arm length.

MODI		
WORK	AND.	ENEKGY

Work done by a constant force $W = Fd \cos \theta$ Kinetic energy $K = \frac{1}{mv}^2$	Work <i>W</i> done by a constant force of magnitude <i>F</i> on an object as it is displaced by a distance <i>d</i> . The angle between the directions of <i>F</i> and <i>d</i> is θ . Work is positive if the object is displaced in the direction of the force and negative if it is displaced against the force. The work is zero if the displacement is perpendicular to the direction of the force. Kinetic energy <i>K</i> for a mass <i>m</i> traveling at a speed <i>v</i> .
Gravitational potential energy $U = mgh \ (local)$ $U = -\frac{GMm}{r} \ (general)$	Potential energy U is the energy that an object of mass m has by virtue of its position relative to the surface of the earth. That position is measured by the height h of the object relative to an arbitrary zero level.
Conservative forces Gravitational force Elastic spring force Electric force Non-conservative forces Frictional forces Air resistance Tension Normal force Propulsion of a motor 	 A force is conservative if either: The work done by the force on an object moving from one point to another depends only on the initial and final positions and is independent of the particular path taken. The net work done by the force on an object moving around any closed path is zero
Conservation of Mechanical Energy (Only holds true if non-conservative forces are ignored) $E_2 = E_1$ $K_2 + U_2 = K_1 + U_1$	The total mechanical energy of a system, remains constant as the object moves, provided that the net work done by external non-conservative forces (such as friction and air resistance) is zero.
Work-energy Theorem $W_{nc} = \Delta K + \Delta U + \Delta E_i$	The work due to non-conservative forces W_{nc} is equal to the change in kinetic energy ΔK plus the change in gravitational potential energy ΔU plus any changes in internal energy due to friction.
Rest Mass Energy $E = mc^2$	The energy inherent to a particle by nature of it having a mass.

We've helped over 50,000 students get better grades since 1999!

Power	Power <i>P</i> is defined as the rate at which work is
W	done. It can also be expressed in terms of the
$P = \frac{H}{M} = Fv$	force F being applied to the object traveling at
t	a speed v. It is more correct to express this
	version of the relationship as
	$P = Fv\cos\theta$
	where θ is the angle between <i>F</i> and <i>v</i> .

MOMENTUM

Linear momentum:	Lincor momentum n is the product of an
	Linear momentum p is the product of an
p - mv	object's mass m and velocity v. Linear
	momentum is a vector that points in the
p = mv	same direction of the velocity.
Principle of conservation of	
linear momentum:	The total linear momentum of an isolated
→ →	
P = P	system remains constant.
$I_2 - I_1$	
	An impulse produces a change in an
Impulse-momentum theorem:	object's momentum. Impulse is given by
$\Lambda m = E 4$	\rightarrow
$\Delta p = r \cdot i$	the product of average force F (F) and
	the time interval $\Delta t (t)$ ever which the force
$\vec{p}_2 - \vec{p}_1 = F_{}\Delta t$	the time interval Δt (i) over which the loce
1 2 1 1 net	is applied. Impulse is a vector that points
	in the same direction as the average force.
Elastic collisions:	
 Bodies do not stick 	
together	
 Kinetic energy is 	A completely inelastic collision is one in
conserved	which the bodies stick together completely
Momentum in	ofter the colligion
conserved	
Inelastic collisions:	In inelastic collisions, kinetic energy is not
 Bodies stick together if 	conserved as some of the initial kinetic
completely inelastic	energy is converted into other forms of
 Kinetic energy is not 	energy such as thermal and sound energy.
conserved	
Momentum is	
 Momental is 	
Conter of Mass (CM or CofM)	
Center of Mass (CM of Collin)	
\sum_{n}^{n}	The center of mass is a point that
$\sum m_i x_i$	represents the average location for the
$x_{1} = \frac{t-1}{2}$	total mass of the system.
M_{m}	
total	In a collision, the velocity of the contor of
For two bodies:	mass of all the colliding objects remains
$m_1 x_1 + m_2 x_2$	mass of all the colliding objects remains
$x_{cm} = \frac{1}{2} 1$	constant.
$m_1 + m_2$	

FLUIDS AND SOLIDS

Density $\rho = \frac{m}{V}$	Density of a liquid at rest. Density can also be measured relative to water, which is termed <i>specific gravity</i> . A specific gravity > 1 means the liquid is more dense then water. A specific gravity
V	< 1 means the liquid is less dense than water
Pressure $P = \frac{F}{A} (general definition)$	The hydrostatic pressure on a fluid volume is dependent on its depth, and is equal in all directions.
Hydrostatic pressure at a fixed depth	

$P = \rho g y$	
Buoyant Force	The buoyant force on an object in fluid is upward
$F_{buoyant} = \rho V g$	and equal to the weight of the fluid that the object displaces.
Continuity Equation	The volume flow rate of a fluid is proportional to
Q - Ay	the cross-sectional area of the pipe and the
Q = AV	velocity of the fluid. Qin must be equal to Qout.
Bernoulli's Equation	One way to remember the Bernoulli equation is to
1 2	think of it as an energy conservation equation.
$p + \rho gy + \frac{1}{2}\rho v^2 = \text{constar}$	The three terms roughly correspond to pressure
2	energy, potential energy, and kinetic energy,
	respectively.
Elastic modulus of a	A high modulus material is hard and rigid.
solid	Examples are metal and ceramic. A low modulus
Stress	material is elastic, like rubber.
$Modulus = \frac{2mu}{m}$	
Strain	

WAVES AND PERIODIC MOTION

Wave Velocity	The velocity of a wave is the product of its
$v = f\lambda$	frequency and wavelength.
Wave Period	
$T = \frac{1}{f}$	
Sound decibels	A difference of 10 in decibels corresponds to
$\beta = 10\log\frac{I}{I_o}$	sound intensity levels that differ by a factor of 10. For example, 90dB is 10 times as loud as 80dB.
Standing Waves	When a standing wave is formed on a piece of
Both ends fixed or free	of the standing wave wavelength. Depending on
$L = \frac{n\lambda_n}{2}$ (<i>n</i> = 1,2,3,)	or an anti-node.
One end fixed one end free	
$L = \frac{n\lambda_n}{4} \ (n = 1, 3, 5, \dots)$	
Beat frequency	When two waves of constant amplitude but
$f_{beat} = \left f_1 - f_2 \right $	different frequencies interfere with each other, the resulting wave's amplitude is confined to an envelope with some periodicity. The frequency of the envelope is the beat frequency and can be heard as distinct beats because of the amplitude variation with time.
Doppler effect	The apparent frequency of the source is
$\frac{\Delta f}{f_s} = \frac{v}{c} \qquad \frac{\Delta \lambda}{\lambda_s} = \frac{v}{c}$	observer, and is decreased as the sources leaves the observer.

ELECTROSTATICS AND MAGNETISM

Bolztmann's constant k and has a value of: $k = 9.0 \times 10^9 \text{ N} \cdot m/C^2$		
Coulomb's law (electric	The magnitude of the force F between two	
force)	charges (Q_1 and Q_2) in terms of the distance r	
$F = k \frac{Q_1 Q_2}{r^2}$	between the two charges. The direction of the force is directed along the line between the two forces. This force is repulsive if the two charges are both positive or both negative, and attractive	

Our Course Booklets - free at prep sessions - are the "Perfect Study Guides."

	if the one charge is positive and the other negative.
Electric field due to a	<i>E</i> is a vector and points away from a positive
distance r	charge and toward a negative charge.
$E = k \frac{Q}{r^2}$	
Electric potential energy	The potential energy stored between the
$U = k \frac{Q_1 Q_2}{r}$	interaction between two point charges.
Electric potential	The electric potential V due to a point charge q
$V = k \frac{Q}{r}$	at a distance r away from the charge.
In constant electric fields	Note that the force F is in the same direction as
$\vec{F} = q\vec{E}$ $U = qEd$	in the opposite direction if the charge is p
V = Ed U = Vq	negative.
	The energy gained by some charge in a field is simply force times the distance traveled. Potential is the energy per unit charge.
Force on a charge moving in a magnetic field	A charge q moving in a magnetic field $ec{B}$ with
$\vec{F} = q\vec{v} \times \vec{B}$	a velocity $ec{\mathcal{V}}$ experiences a force $ec{F}$. The
$F = qvB\sin\theta$	magnitude of this force can also be expressed $\stackrel{\neg}{\rightarrow}$
1	in terms of the angle $ heta$ between $ec{ u}$ and $ec{B}$.

ELECTRO	DNIC CIRCUITS
Ohm's law	The potential difference V across a device
V = IR	is given by its resistance R and the current I
B 1 2 2 1	that flows through it
Resistance of a wire	The resistance R of a length L of wire with a
_p L	cross-sectional area A and resistivity ρ .
$R = \rho - $	Resistivity has units $\Omega \cdot m$.
A	
Electric power	With help from Ohm's law, electric power P
V^2	can be calculated using any combination of
$P = IV = I^2 R = \frac{V}{I}$	two of the following quantities: resistance R,
R	voltage v or current /
RMS voltage and current (AC	The root-mean-square values can be
circuits)	calculated from the peak values (V_0 and I_0)
V_{o}	and are used to calculate the average
$V_{rms} = \frac{10}{\sqrt{2}}$	power \overline{P} in AC circuits:
I /	V^2
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$\overline{P} = I^2 R = \frac{V_{rms}}{V_{rms}}$
$\sim 10^{10}$	R
Resistances in series	For more than two resistances in series:
$R_{eq} = R_1 + R_2$	$R_{eq} = R_1 + R_2 + R_3 + R_4 + \dots$
Resistances in parallel	For more than two resistances in parallel:
1 1 1	1 1 1 1 1
$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	++++
R_{eq} R_1 R_2	R_{eq} R_1 R_2 R_3 R_4
Capacitance	A higher capacitance capacitor can store
- Q	more charge at the same voltage.
$C = \frac{1}{V}$	
v	

Capacitors in series C_S and parallel C_P	For more than two capacitors:
$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2}$ $C_P = C_1 + C_2$	$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} + \dots$ $C_P = C_1 + C_2 + C_3 + C_4 + \dots$
Electric energy stored by a capacitor $U_E = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$	Amount of electric energy stored in a capacitor is given in terms of the capacitance <i>C</i> and the potential difference between the conductors <i>V</i> .

LIGHT AND GEOMETRICAL OPTICS

Snell's law	The angle of incidence θ_1 is with respect to
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	the perpendicular of the surface between the two media (with indices of refraction n_1 and n_2). The angle of refraction θ_2 is also with respect to the perpendicular.
Total internal reflection	The critical angle θ_c is the angle of incidence
$\sin\theta_c = \frac{n_2}{n_1}$	beyond which total internal reflection occurs. The index of refraction for the medium in which the incident ray is traveling is n_1
Energy of one photon	The energy of light is dependent on its
E = hf	frequency. H is the planck constant 6.626068 × 10 ⁻³⁴ m ² kg / s
Index of refraction	The higher the index of refraction is for a
$n = \frac{c}{c}$	that medium.
V	
The lens equation	The focal length of the lens f is:
	Positive for a converging lens
$\overline{d_o}^{\dagger} \overline{d_i}^{-} \overline{f}$	 The object distance d_o is: Positive if it is on the side of the lens from which the light is coming Negative if on the opposite side The image distance d_i is: Positive if it is on the opposite side of the lens from which the light is coming Negative if on the same side
Lateral magnification	For an upright image, the magnification <i>m</i> is
$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$	positive and for an inverted image <i>m</i> is negative.
Power of a lens	
$P = \frac{1}{f}$	
Focal length of a spherical	For a spherical mirror, the focal length is half
mirror	of the radius of curvature.
$f = \frac{1}{2}r$	

Our Course Booklets - free at prep sessions - are the "Perfect Study Guides."

